SIGRAFLEX® HEXAGON

Impregnated TA Luft-Compliant Sealing Sheet Made from Natural Graphite with Honeycomb <u>Stainless Steel Reinforcement</u>

Expanded Graphite

Broad Base. Best Solutions.

SIGRAFLEX® HEXAGON

Our Contribution to Environmental Protection

SIGRAFLEX® HEXAGON

is an adhesive-free graphite sealing sheet made from flexible graphite foil with a single honeycomb 316 (L) stainless steel reinforcement. The layers of graphite and stainless steel are joined together in a patented adhesive-free process. Contrary to conventional stainless steel reinforcements such as smooth, tanged or expanded metal, the innovative honeycomb structure reduces leakage significantly. The constant thickness of the honeycomb reduces the diffusion of the media through the gasket due to the increase in gasket stress around each cell. To further reduce leakage the sealing sheet is impregnated. With SIGRAFLEX HEXAGON the SGL Group offers a sealing sheet which meets the tightened legislative requirements for environmental protection.

Applications

- For all common pipework and vessel flange designs
- In particular for applications involving toxic, inflammable, polluting or high-value media
- For internal pressures ranging from vacuum to 100 bar
- ► For corrosive media
- Suitable for a broad range of temperatures from -250 °C to approx. 550 °C under consideration of the chemical resistance; for applications at more than 450°C, users should request our advise
- Gaskets for the chemical, petrochemical and refinery industries
- Steam pipework in power stations and heating facilities
- Existing plants

Properties

- ► Reduction in fugitive emissions due to very high leak-tightness
- ► Complies with the TA Luft leakage requirements
- Savings in cost of ownership (media loss, downtimes, assembly cost)
- High blow-out resistance
- Long-term stability of compressibility and recovery
- Good chemical resistance
- Very high fault tolerance during assembly and operation
- High operational reliability and excellent oxidation resistance
- No measurable cold or warm flow characteristics up to the maximum permissible gasket stress
- High thermal shock resistance
- No aging or embrittlement, owing to absence of adhesives or binders
- Asbestos-free, no associated health risks

Approvals

- ► TA Luft (VDI 2440/VDI 2200)
- ► Fire safety according to API 607
- Blow-out resistance (TÜV at 2.5 times the nominal pressure)
- ► DVGW (DIN 3535-6)

Compressibility of SIGRAFLEX® HEXAGON

Assembly instructions

For assembly, use dry and undamaged gaskets only. Wet graphite gaskets must not be fitted unless first dried completely. The sealing faces must be clean, dry and free from grease. Do not use release agents! Position the gasket centrically and avoid mechanical stresses during assembly. An assembly aid can be used if necessary. To facilitate assembly in difficult positions, the gasket may be fixed by using a commercially available adhesive. However, the adhesive should be applied sparingly at a few points only.

Align the flanges as plane-parallel as possible. First hand-tighten the bolts and then tighten the bolts in a crosswise order to about 50% of the maximum torque value, in the second stage to about 80% and to the full value in the third stage. All bolts must be tightened to the specified bolt load, so the torque must be checked repeatedly. Our detailed assembly instructions are available on request.

Forms supplied

SIGRAFLEX HEXAGON sheets are available in the following dimension and type designation:

Dimensions in mm 1500 x 1240 x 2.0

Types V20010C8P

Material data of SIGRAFLEX® HEXAGON						
Material type		V20010C8P				
Thickness	mm	2.0				
Dimensions	m	1.5 x 1.24				
Bulk density of graphite	g/cm³	1.0				
Ash content of graphite (DIN 51903)	%	≤ 2.0				
Total chloride content	ppm	≤ 25				
Reinforcing steel sheet details ASTM material number Thickness Number of sheets	mm	Honeycomb stainless steel sheet 316 (L) 0.5 1				
Residual stress (DIN 52913) $\sigma_{\text{D 16 h, 300^{\circ}C, 50 N/mm^{3}}}$	N/mm²	≥ 45				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N/mm² N/mm² N/mm² N/mm²	10/14 10/15 11/16 12/17				
m $\sigma_{ m VO}$	N/mm² N/mm²	1.3 160 110				
Gasket factors according to DIN EN 13555		see www.gasketdata.org				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	% % %	35 – 45 3 – 5 < 4 4 – 7				
Young's modulus at 20 N/mm² (DIN 28090-1)	N/mm²	1000				
ASTM "m" factor "y" factor	psi	2.5 2000				
Compressibility ASTM F36 Recovery	% %	35 – 45 15 – 25				
The gasket factor conversion formulas as per AD Merkblatt B7 are as follows:		$k_{o} \cdot K_{D} = \sigma_{vu} \cdot b_{D}$ $k_{1} = m \cdot b_{D}$				

 k_1

Definitions

$\sigma_{\text{VU/0.1}}$	Minimum gasket assembly stress needed to comply with leakage
	class L 0.01 (according to DIN 28090-1)
	Recommended gasket assembly stress: \ge 20 N/mm ² up to σ_{BO}
σ_{BU}	Minimum gasket assembly stress in service, where $\sigma_{\scriptscriptstyle \text{BU}}$ is the product
	of internal pressure p and gasket factor m for test and in service
	$(\sigma_{\scriptscriptstyle {\sf BU}}={\sf p}\cdot{\sf m})$
σ_{VO}	Maximum permissible gasket stress at 20 °C
$\sigma_{\text{BO, 300°C}}$	Maximum permissible gasket stress in service
m	$\sigma_{\scriptscriptstyle BU}/p_{\scriptscriptstyle i}$
"m" factor	Similar to m, but defined according to ASTM, hence different value
"y" factor	Minimum gasket stress in psi

k_o In mm, factor for gasket assembly stress

- In mm, factor for gasket stress in service
- $K_{\scriptscriptstyle D}$ \$ In N/mm², max. gasket stress-bearing capacity under assembly conditions

 $\epsilon_{\mbox{\tiny KSW}}$ Compression set under a gasket stress of 35 N/mm^2

 $\epsilon_{\text{KRW}} \qquad \mbox{Gasket recovery after reduction in gasket stress from 35 N/mm^2} to 1 N/mm^2 \label{eq:krw} to 1 N/mm^2 \label{krw} to 1 N/mm^2 \lab$

- ϵ_{wsw} Gasket creep compression under a gasket stress of 50 N/mm² at 300 °C after 16 h
- $\epsilon_{\scriptscriptstyle WRW}$ \$ Recovery after reduction in gasket stress from 50 N/mm² to 1 N/mm²

The percentage changes in thickness of $\epsilon_{\mbox{\tiny KSW}}$ $\epsilon_{\mbox{\tiny KRW}}$ $\epsilon_{\mbox{\tiny WSW}}$ and $\epsilon_{\mbox{\tiny WRW}}$ are relative to the initial thickness.

Product overview				
Product		Characteristics	Recommended applications	
SIGRAFLEX® FOIL FC/Z/APX		Flexible, continuous	–250 °C to approx. 550 °C; for compressed packings, spiral-wound and kammprofile gaskets	
SIGRAFLEX® STANDARD LCI		Unreinforced, impregnated	Raised-face flanges; enamel or glass flanges; highly corrosive media	
SIGRAFLEX® ECONOMY VC4		Reinforced with bonded s/s** foil	Pumps; fittings; gas supply; waste gas pipelines	
SIGRAFLEX® UNIVERSAL VC2I	1	Reinforced with tanged s/s** foil, impregnated	Pipework and vessels in the petro-/chemical industries and in power stations	
SIGRAFLEX® UNIVERSAL PRO VC2I-P	•	Reinforced with tanged s/s** foil, impregnated	For TA Luft* applications; for pipework and vessels in the petro-/chemical industries and in power stations	
SIGRAFLEX® SELECT V16010C3I	•	High-integrity s/s** foil reinforcement, impregnated	For TA Luft* applications; raised-face flanges; pipework in the chemical and petrochemical industries	
SIGRAFLEX® HOCHDRUCK VZ3I	•	High-integrity multilayer laminate, impregnated	Universal sealing sheet, also for solving sealing problems in pipework, process equipment, tongue- and-groove flanges and non-standard joints in the petro-/chemical industries and in power stations	
SIGRAFLEX® HOCHDRUCK PRO VZ3I-P	•	High-integrity multilayer laminate, impregnated	Universal sealing sheet for TA Luft* applications, also for solving sealing problems in pipework, process equipment, tongue-and-groove flanges and non-standard joints in the petro-/chemical industries and in power stations	
SIGRAFLEX® MF VZ2MF	•	High-integrity laminate made of graphite, s/s** and PTFE	Maximum requirements for sealability (TA Luft*), safety, chemical resistance and process hygiene; sealed joints in the chemical and petrochemical, pharmaceutical and food industries	
SIGRAFLEX® EMAIL VZ3E		High-integrity s/s** foil reinforcement	PTFE-envelope gaskets in enameled pipework, vessels, stub connections, etc.	
SIGRAFLEX® HEXAGON VC8P	•	s/s** foil with honeycomb pattern, without glue, impregnated	High requirements for sealability (TA Luft*), for pipework and vessels in the petro-/chemical industries and in power stations	

Forms supplied: ▲ roll or tape ■ sheet material ● gasket with inner eyelet, for applications requiring TA Luft approval *TA Luft: German Clean Air Act ** s/s: stainless steel

® registered trademark of SGL CARBON SE

05 2012/0 E Printed in Germany

This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should therefore not be construed as guaranteeing specific properties of the products described or their suitability for a particular application. Any existing industrial property rights must be observed. The quality of our products is guaranteed under our "General Conditions of Sale".

Graphite Specialties

SGL CARBON GmbH

Werner-von-Siemens-Str. 18 86405 Meitingen/Germany Phone +49 8271 83-2276 Fax +49 8271 83-2419 expandedgraphite@sglcarbon.de www.sigraflex.eu

